Fast Solvers for the Symmetric Ipdg Discretization of Second Order Elliptic Problems

نویسندگان

  • LIUQIANG ZHONG
  • ERIC T. CHUNG
  • CHUNMEI LIU
چکیده

In this paper, we develop and analyze a preconditioning technique and an iterative solver for the linear systems resulting from the discretization of second order elliptic problems by the symmetric interior penalty discontinuous Galerkin methods. The main ingredient of our approach is a stable decomposition of the piecewise polynomial discontinuous finite element space of arbitrary order into a linear conforming space and a space containing high frequency components. To derive such decomposition, we introduce a novel interpolation operator which projects piecewise polynomials of arbitrary order to continuous piecewise linear functions. We prove that this operator is stable which allows us to derive the required space decomposition easily. Moreover, we prove that both the condition number of the preconditioned system and the convergent rate of the iterative method are independent of the mesh size. Numerical experiments are also shown to confirm these theoretical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

hp-Adaptive FEM for Elliptic Obstacle Problems CG vs. IPDG

The solution of an elliptic obstacle problem is typically only of reduced regularity with a singularity across the a priori unknown free boundary. It is therefore apparent that hp-adaptive FEM is an appropriate tool for solving that problem approximately. Here, the non-penetration condition is enforced weakly by a Lagrange multiplier λ leading to a mixed method. On the discrete level the Lagran...

متن کامل

UN CO RR EC TE D PR O O F 1 A Neumann - Dirichlet Preconditioner for FETI - DP 2 Method for Mortar Discretization of a Fourth Order 3 Problems in 2 D 4

FETI-DP methods were introduced in [8]. They form a class of fast and efficient 13 iterative solvers for algebraic systems of equations arising from the finite element 14 discretizations of elliptic partial differential equations of second and fourth order, 15 cf. [8, 10, 11, 16] and references therein. In a one-level FETI-DP method one has 16 to solve a linear system for a set of dual variable...

متن کامل

An Analysis of a Preconditioner for the Discretized Pressure Equation Arising in Reservoir Simulation

We analyze the use of fast solvers as preconditioners for the discretized pressure equation arising in reservoir simulation. Under proper conditions on the permeability functions and the source term, we show that the number of iterations for the Conjugate Gradient method is bounded independently of both the lower bound of the permeability and the discretization parameter h. Such results are obt...

متن کامل

Inner solvers for interior point methods for large scale nonlinear programming

This paper deals with the solution of nonlinear programming problems arising from elliptic control problems by an interior point scheme. At each step of the scheme, we have to solve a large scale symmetric and indefinite system; inner iterative solvers, with adaptive stopping rule, can be used in order to avoid unnecessary inner iterations, especially when the current outer iterate is far from ...

متن کامل

Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the biharmonic problem

We study the convergence of an adaptive Interior Penalty Discontinuous Galerkin (IPDG) method for a 2D model second order elliptic boundary value problem. Based on a residualtype a posteriori error estimator, we prove that after each refinement step of the adaptive scheme we achieve a guaranteed reduction of the global discretization error in the mesh dependent energy norm associated with the I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015